1 The Category of Graphs (or Pseudographs)

Definition 0.1

A simple graph \mathcal{G} is an ordered pair of dinjoint sets (N.E) of tuodes $x \in N$ and edges $e_{n y} \in E$ such that E is a subsect of the set $N^{(2)}=N \times N$ of utordered pxifs of N, If the set N is finite then the graph \mathcal{G} in aloo finite, as it is nsually msemed with N and E belug assumed to be finite, unkess otherwbe stated. Thr set N is the set of nodes, or wertiocs, and E is the set of alges.

Diagrase in a categocy can be considered as directed simple graphs in which the edges are replaced by arrows of momphesme that may satixfy commutativity:

and identity conditions (or EIAC axioras).

Definition 0.2

A peendograph G_{P} is an ofriered triple ($V, E, 1$). where V is a set called the verter set of G_{P}, E is a set called the rodge set of G, and i: $E \rightarrow 2^{\text {V }}$ is the mondence mop, barch that for every $c_{1} \in E, 1 \leq|\dot{i}(e)| \leq 2$.

Remarkt A paetadograph con be regarded as a geneculization of the cojecept of graph.

Definition 0.3

For apy two given pacudographs $G_{P 1}=\left(V_{1}+E_{1}, i_{1}\right)$ and $G_{P_{2}}=\left(V_{2}, E_{2}, 1_{2}\right)$, a graph homomarphisan h from $G_{P_{1}^{\prime}}$ to $G_{h_{2}}$ consists oi two functions $f: V_{1} \rightarrow V_{2}$ and $g: E_{1} \rightarrow E_{2}$, such that

$$
\begin{equation*}
r_{2} \circ g=f^{*} \circ i_{1} \tag{1.1}
\end{equation*}
$$

where the function $f^{*}: 2^{V_{i}} \rightarrow 2^{V_{s}}$ is iefined as $f^{\prime}(S)=\{f(s) \mid s \in S\}$.
When \mathcal{G}_{1} and \mathcal{G}_{2} are just simple graphs, a graph bonomorphism nasy be defined in terms of a aingle function $f: V_{1} \rightarrow V_{2}$ satisflying the condition (*)

$$
\left\{v_{1}-v_{2}\right\} \text { is an edige of } \boldsymbol{G}_{1} \Longrightarrow\left\{f\left(v_{1}\right), f\left(v_{2}\right)\right\} \text { is an edge of } \boldsymbol{G}_{2} \text {. }
$$

A graph isomorphzsen $h=(f, g)$ is a graph homomorphisan suxh that both f and g are bjections.

